Package: ClusROC 1.0.2
ClusROC: ROC Analysis in Three-Class Classification Problems for Clustered Data
Statistical methods for ROC surface analysis in three-class classification problems for clustered data and in presence of covariates. In particular, the package allows to obtain covariate-specific point and interval estimation for: (i) true class fractions (TCFs) at fixed pairs of thresholds; (ii) the ROC surface; (iii) the volume under ROC surface (VUS); (iv) the optimal pairs of thresholds. Methods considered in points (i), (ii) and (iv) are proposed and discussed in To et al. (2022) <doi:10.1177/09622802221089029>. Referring to point (iv), three different selection criteria are implemented: Generalized Youden Index (GYI), Closest to Perfection (CtP) and Maximum Volume (MV). Methods considered in point (iii) are proposed and discussed in Xiong et al. (2018) <doi:10.1177/0962280217742539>. Visualization tools are also provided. We refer readers to the articles cited above for all details.
Authors:
ClusROC_1.0.2.tar.gz
ClusROC_1.0.2.zip(r-4.5)ClusROC_1.0.2.zip(r-4.4)ClusROC_1.0.2.zip(r-4.3)
ClusROC_1.0.2.tgz(r-4.4-x86_64)ClusROC_1.0.2.tgz(r-4.4-arm64)ClusROC_1.0.2.tgz(r-4.3-x86_64)ClusROC_1.0.2.tgz(r-4.3-arm64)
ClusROC_1.0.2.tar.gz(r-4.5-noble)ClusROC_1.0.2.tar.gz(r-4.4-noble)
ClusROC_1.0.2.tgz(r-4.4-emscripten)ClusROC_1.0.2.tgz(r-4.3-emscripten)
ClusROC.pdf |ClusROC.html✨
ClusROC/json (API)
NEWS
# Install 'ClusROC' in R: |
install.packages('ClusROC', repos = c('https://toduckhanh.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/toduckhanh/clusroc/issues
- EnergyEthiopia - A subset of energy choice data in 4 cities of Ethiopia
- MouseNeurons - A subset of mouse brain cells data
- data_3class - A simulated data
- data_3class_bcx - A simulated data
biomakerbox-cox-transformationmixed-effects-modelsoptimal-thresholdreciver-operating-characteristics
Last updated 2 years agofrom:70eb50546c. Checks:OK: 7 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 02 2024 |
R-4.5-win-x86_64 | NOTE | Nov 02 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 02 2024 |
R-4.4-win-x86_64 | OK | Nov 02 2024 |
R-4.4-mac-x86_64 | OK | Nov 02 2024 |
R-4.4-mac-aarch64 | OK | Nov 02 2024 |
R-4.3-win-x86_64 | OK | Nov 02 2024 |
R-4.3-mac-x86_64 | OK | Nov 02 2024 |
R-4.3-mac-aarch64 | OK | Nov 02 2024 |
Exports:ci_clus_vusclus_lmeclus_opt_thres3clus_roc_surfaceclus_tcfsclus_vus
Dependencies:abindbackportsbase64encbootbroombslibcachemcarcarDataclicodetoolscolorspacecorrplotcowplotcpp11DerivdigestdoBydoParalleldplyrellipseevaluatefansifarverfastmapfontawesomeforeachFormulafsgenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehighrhtmltoolshtmlwidgetsisobanditeratorsjquerylibjsonliteknitrlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpolynompurrrquantregR6rappdirsRColorBrewerRcppRcppArmadilloRcppEigenrglrlangrmarkdownrstatixsassscalesSparseMstringistringrsurvivaltibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunyaml